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2.3 Relations of Hodge numbers

Let (M,w) be a compact Kahler manifold. Since [L,Ag] = [A, Ag] = 0,
the Lefschetz operator L and its dual A induce maps between cohomology
groups:

L:H*(M,R) — H*(M,R), A:H*M,R)— H*?*(M,R). (2.3.1)

Definition 2.3.1. Let (M,w) be a compact Kéhler manifold. Then the
primitive cohomology is defined by

H*(M,R)pyim := Ker (A : H*(M,R) — H"*(M,R)),

o (2.3.2)
HP( M) primn == Ker (A : HP(M) — HP~H71(M)) .

Note that the primitive cohomology does not depend on the chosen Kahler
structure and only on the cohomology class of the Kéahler form [w] € H"(M).

Theorem 2.3.2 (Hard Lefschetz Theorem). Let (M,w) be a compact Kdhler
manifold with dimec M = n. Then for k <mn,

L™%: H*(M,R) ~ H* *(M,R) (2.3.3)
and for any k,
HYMR)= @ L'H"(X,R)pim, (2.3.4)
i>(k—n)+

where a, = max{a,0}. Moreover, these two isomorphisms are compatible
with the bidegree decomposition. It means that for k < n,

Lk gPEP(M) o~ HPRRP (), (2.3.5)
and for any k,
HP(M) = EB L HP7H7( X)) i (2.3.6)
>(p+q—n)
In particular,
H* (M, R)psim = €5 HP(M)prim. (2.3.7)
pt+a=k

In order to prove the Hard Lefschetz theorem, we need the following
lemma.
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Lemma 2.3.3. For a € A¥T*M, we have
[L, Al = (k —n)a (2.3.8)
and
(L' Ao =i(k —n+i—1)L" . (2.3.9)

Proof. We prove (2.3.8) by induction. If dim¢ M = 1, for a € AT*M,
[L,Ala = —ALa = —a; for « € A'T*M, [L,A]la = 0; for a € A*T*M,
[L,A]a = LAa = . (2.3.8) holds.

Assume that (2.3.8) holds for dim¢ M = m. If dim¢ M = m + 1, for
x € M, we split T,M by T,M = U & V such that dimg V' = 2. Then
AFT*M = @2 A TURAV. Fora € A¥T*M, a = By @B+ 1R B+ Lo @ B,
Thus, for 7 =0,1,2,

[L,A]B; @ B; = L (A(B;) ® B; + B; @ A(B;)) — A (L(B;) ® B; + B; ® L(B;))
= [L,AJ(B;) ® Bj + B; @ [L, A](B}) = (k —j —m)B; @ B; + (j — 1)B; ® B;
= (k—m—-1)8;® 8. (2.3.10)

Therefore, we get (2.3.8).
We also prove (2.3.9) by induction. By (2.3.8), (2.3.9) holds for i = 1.
Assume that (2.3.9) holds for i = m. For i = m + 1,

(L™ Ala = L™ Ao — AL™ ' = LIL™, Ao + [L, A]L™a
=m(k—n+m—1)L"a+ (2m+k—n)L"a
=(m+1)(k—n+m)L™a. (2.3.11)

Therefore, we get (2.3.9).
The proof of our lemma is completed. O

The Hard Lefschetz theorem Theorem 2.3.2 follows directly from [L, Ag] =
0 and the following proposition.

Proposition 2.3.4. Let P* = {a € A*T*M : Aa = 0}.
(i) If u € P*, then L’u =0 for s > (n —k+1),.
(ii) If k > n, then P* = 0.
(iii) The map L™ : A¥T*M — A?""FT*M is bijective.
(iv) If k < n, then P* = {a € A*T*M : L"*1q = 0}.
(v) There exists orthogonal decomposition A¥T* M = ®;> (), L*(P*~%).
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Proof. For (i), by (2.3.9), for u € P*,
ANL'u=ANTYAL — L'Nu=r(n—k—r+ 1AL . (2.3.12)
By induction, for r > s, we have

NLlu=r(r—1)---(r—s+1)-(n—k—r+1)---(n—k—r+s)L u.
(2.3.13)

Take r =n + 1. Then L™u = 0. Thus
n+1)---(n—s+2)-(=k)---(k+s—1)L"u=0. (2.3.14)

So if s < k, we have L"'=*y = 0, which is equivalent to (i).

Take s =0 in (i). We get (ii).

(iii) Since tk(A*T* M) = rk(A*""*T*M), we only need to prove the injec-
tivity. We prove it by induction on k. For £ = 0, L" is injective. We assume
that the injectivity holds for k < m — 1. For k = m, r < n — k, we can
assume that L™! is injective on A™T*M. For o € A™T*M, if L"aw = 0, then
by Lemma 2.3.3,

LY LA —r(m —n+7r—1)Id)a
=[L" Ala—r(m—n+r—1)L" 'a=0. (2.3.15)

Thus (LA—r(m—n+r—1)Id)a = 0. Since r <n—m, r(m—n+r—1) # 0.
Thus there exists 3 € A™2T*M, such that o« = LS and L™"'3 = 0. Since
L™ is injective, 8 = 0. So o = 0 and L" is injective. By induction, we get
L™ is injective. So (iii) holds for any k < n.

(iv) If a € P*, from (ii), we have L"*lq = 0. If L" o = 0, we have
L *1Aq = 0. Since L™ **2 is bijective, we have Aa = 0.

(v) is equivalent to the statement that for any o € AT*M, there exists
unique decomposition

a= > L', u P (2.3.16)

r>(k—n)+

We first study the uniqueness. Assume that « = 0 and there exists r such
that u, # 0. Let s be the largest integer such that u, # 0. Then

Na=0= Z N L"u, = Z NN L, = Z e Ny,
(k—n)4+<r<s (k—n)4+<r<s (k—n)4+<r<s

(2.3.17)
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where ¢, =7 (n—k+r+1)---(n—k+2r) by (2.3.13). Since Au, = 0 for
any r, we have us = 0, a contradiction.

For the existence, by (iii), we can assume that k& < n and prove it by
induction on k. It is obvious for £ = 1. We assume that (2.3.16) exists for
any k < m. By (iii), for « € A™T*M there exists 8 € A™2T*M, such that
Lrm23 = [ o, Let ap = a — LB. Then L™ ™ ay = 0. From (iv),
ag € P™.

The proof of our proposition is completed. O

Let *(M) := dim¢c H*(M, C) be the usual Betti number of M and let
hP1(M) := dim¢ HP4(M) be the so-called Hodge number of M when M is
a complex manifold. Remark that b* is a topological invariant but h?¢ might
be not, which depends on the complex structure.

In this section, we assume that (M, w) is a compact Kahler manifold.
By Theorem 2.2.25 and (2.2.100), we have

= > W <« HYM,C)~ P H™(M
ptq=k pta=k
W= e () ~ T
hP4 = " P« Serre duality: HP(M) >~ H" ™ P"79(M)*;
Pt = B P <= Hodgex : HPY(M) ~ H""""P(M);
hPR=P — prtr=hn=r p < | < n, < Hard Lefschetz : HP* (M) o~ H™P=kn=2 (),
(2.3.18)

A popular picture to describe the relations is the Hodge diamond:

bO h0,0

bl hl,O hO,l

b2 h2,0 hl,l h0’2

b B0 Serre \ h%™ 1 Hodge
b2n72 hn,nf2 hn:l,.nfl hn72,n
bZn—l hn,n—l hn—l,n

b2n prom

éionj.

Theorem 2.3.5. On compact Kdhler manifolds, we have
(1) the odd Betti numbers b***1 are even,
(2) h*0 = 2b' is a topological invariant;
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(3) the even Betti numbers b* are positive;

(4) hPP are positive.

(5) if k =p+4q <n, then BP9 > hP=H01 b > by o If k =p+q > n,
then hP1 2 hp+1,q+17 bk 2 bk+2.

Proof. The first statement follows from

2k+1 k
P2+ Z pp2ktl-p _ o Z P2kt 1-p (2.3.19)
p=0 p=0

(2) is obvious.

For (3), if w* = da, by Stokes’ theorem, [, w" = [, d(a Aw"™*) =0. It
will not happen since by (2.1.58), w" is a volume form. So w* is d-closed and
not d-exact.

For (4), we observe that w? € QPP(M) and is d-exact. If wP = 93, then
w" = I(B Aw"P) is D-exact. But [w]™ € H**(M,C) ~ H™"(M) is not equal
to 0 since it is a volume form. So w” is not d-exact.

For (5), let Al = dim H?%(M)pm. Then Theorem 2.3.2 says that if

prim
ptg=mn,

[ hg;i;qil 4. (2.3.20)
and if p+ ¢ > n,
BPd — h;‘gf{;”_?’ + hgr_igl_l’"_p_l T (2.3.21)
So we get (5).
The proof of our theorem is completed. O

Corollary 2.3.6. The only sphere that admits a Kdihler structure is S?.
Let PR = {a € APTOO*M @ AITOD*M : Aa = 0}
Lemma 2.3.7. For o € P29, p+q =k, we have

L Fq

My:(—1fﬂ¥9v—1“ﬂ01_kﬂ.

(2.3.22)

Proof. We only need to prove it at one point of M. In this proof we regard
TUO*M as C". Let dzy,---dz, be a basis. For S = {iy,--- i}, we denote

by wg = (@) dzi, Ndzy N\--- Ndz;, Ndz;,. We can write

o= Z Ya.B.sdza N dzy N wg, (2.3.23)
A,B,S
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where A, B, S are disjoint subsets of {1,--- ,n}. Let aup = ¢va,B,sd2a A
dzp N wg. Thus Aa = 0 implies that Aoy p = 0. So we only need to prove
the lemma for

a=dzy Ndzg A Z VsWs. (2.3.24)
S
In this sum, we only need to consider the subsets S C K := {1,--+ ,n} —

(AU B) and the cardinal m = |S| = (k —|A| —|B])/2. Since Aa = 0, for any
N C K with |[N| =m — 1, we have

Z Ynugy = 0. (2.3.25)

iIEK—N

Let ¢S be the complement of S in K. Then by (2.2.30), we have

(dza Ndzp Nwg) A *(dza N dzZp N wg) = vol

v—1\"

After a careful calculation, we have

n—k
1 B
*(dza N dzZp N\ wg) = (—1)m+k<k2+l> (—) V=1""dzs NdZp Aweg

2
(2.3.27)
So
n—=k
y [v/—1 _
*xo = Z(_1>m+k<k2+) (_) /—_1p q’YSdZA AdZp A wes. (2.3.28)

2
SCK

On the other hand,

k(k+1) p—gq L" o
1) 2/~
(=1 (n— k)
n—k
an _
— (—1)"%7 (T) V=TT " qsdea A dzp Awsuw
S,N

- Z(_l)% (E)n V=1 (Z 75) dza Ndzp Awy, (2.3.29)

2
JCK sScJ

where N runs through the subsets of cardinal n — k contained in K and
disjoint from S.
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For every r < m, let S, = 7 yqj-,7v. Then Sp = ve; and S, =
Y ncyn- Then (2.3.25) implies that (r + 1)S,41 = —(m —r)S,. So S, =
(=1)™Sy. It means that

> s = (=1)"ye, (2.3.30)

ScJ

From (2.3.28), (2.3.29) and (2.3.30), we get (2.3.22).

The proof of our lemma is completed. O

Let (M,w) be a compact Kéhler manifold with dim¢ M = n. The
Poincaré duality implies a non-degenerate pairing

(,):H*(M,R) x H"*(M,R) — R. (2.3.31)
We define the intersection form Q on H*¥(M,R), k < n by

Qa, B) = (L"*a, B) = / WwF AN B. (2.3.32)

M

Clearly, it is symmetric for k even and antisymmetric for £ odd. Thus on
H*(M,C), the sesquilinear form

Hi(or, 8) = (vV=1)"Q(e, B) (2.3.33)
is a Hermitian form.

Lemma 2.3.8. For k <n, the Lefschetz decomposition

HY(M,C) = ) L'H* (X, C) prim. (2.3.34)

120

is orthogonal for H*. Moreover, on each primitive component L' H* (X, C) prim,
Hy, induces the form (—1)'Hy_o;.

Proof. For a = L'/, f = L*f', with o/, §’ primitive and r < s, we have
L *anp = L kr+so/ A3, By Proposition 2.3.4 (iv), we have L"*+sq/ =
0. Thus Hi(a, $) = 0. The second statement is obvious.

The proof of our lemma is completed. O

The curve case of the following theorem is due to Riemann.

Theorem 2.3.9 (Hodge-Riemann bilinear relation). Let (M,w) be a com-
pact Kdihler manifold with dim¢ M = n. The decomposition H*(M,C) ~

k(k+1)

D, HP(M) is orthogonal for Hy. Moreover, the form (V—=1)P~*(=1)"2 Hy
is positive definite on HP4 (M) pyim.
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Proof. The first statement follows directly by counting the degrees.
For the second statement, for a« € HPY(M)pim the harmonic form, by
Lemma 2.3.7,

Hi(o, o) = (\/—71)’“/ a AL Fa

M
— (VST — k)!(—l)’“‘i‘”\/—f"’/ o A*G
M
= (n— k(=D VT T a2, (2.3.35)
The proof of our theorem is completed. O

Theorem 2.3.10 (Hodge index theorem). Let (M,w) be a compact Kdhler
manifold with dime¢ M = n even. Let sign(Q) be the signature of the inter-
section form Q(o, B) = [, @ A on H*(M,R). Then

sign(Q) = > _(—1)7A"". (2.3.36)

p.q

In particular, the number Zp’q(—l)php’q 15 a topological invariant.
Proof. For n =2k, o € HP4(M)pyim, p + ¢ = n — 2r, we have

sign(Q) = (—1)*sign(H). (2.3.37)
By (2.3.35),

H(L o) = (=1)" Hyap() = (=1)"(=1)* 7P (2r)!]| e
= (2n)(=1)"*?|| .. (2:3.38)

So
sign(Q) = Y (=PRBL = Y (=D)P Y (1R (2.3.39)
r>0,p+q=n—2r pt+q=n 7>0
By (2.3.20), we have hl{ = kP9 — hP~H41 So
sign(Q) = Z (—1)P (hp’q + 22(—1)jhp_j’q_j>
p+q=n j>0
@ (—1)? (hp,q + Z(_l)jhp—j,q—j>
ptg=n J#0

= 3 (o @3 (<paea. (2.3.40)

p+q even p.q
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Here (1) uses the Serre duality and (2) follows from (—1)PhP9 4 (—1)7p%P = (
if p+ ¢ is odd.
The proof of our theorem is completed. O

Definition 2.3.11. Let M be a compact complex manifold of dimension n.
The Hirzebruch x,-genus is the polynomial

n

Xy = Y (=) hPayP. (2.3.41)

p,g=0

It is a special case of the elliptic genus, a mathematical analogue of the
partition function in physics. The following theorem is the corollary of the
Hirzebruch-Riemann-Roch Theorem 2.1.29.

Theorem 2.3.12. In local terms,

Xy = /M Td(T"M) (i Y ch(T(”’“)*M)> . (2.3.42)

p=0

Ify =0, xo = > _o(—=1)%> and Td(M) := [,, TAT""M) are two
definitions of the arithmetic genus in the history.
If y =1, and if M is Kéahler with even complex dimension, then y; =

sign(@) in Theorem 2.3.10. In this case, (2.3.42) reads

sign(Q) = /M L(M), (2.3.43)

where L is defined in (2.1.87). This is the Hirzebruch signature theorem,
which also holds for compact 4k-dimensional manifolds.
If y=—1, and if M is Kahler,

n n

Xo1 = Y (=1PFrt =3 (= 1)k = e(M), (2.3.44)

p,q=0 k=0

the Euler number. In this case, Theorem 2.3.12 means that

e(M) = /M en(M) = cn(M). (2.3.45)

This is the Gauss-Bonnet-Chern Theorem for complex manifolds. Note that
(2.3.45) also holds on compact complex manifolds.
We finish this chapter by the famous Hodge conjecture.
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Definition 2.3.13. The fundamental class [Z] € HPP(M) of a complex
submanifold Z C M of codimension p in M is defined by

/Ma/\[Z]:/ZayZ (2.3.46)

for any o € H*"~?P(M).

Definition 2.3.14. If M is a complex submanifold of a complex projective
space, then M is called a projective manifold.

Now we could state a version of the Hodge conjecture.

Conjecture 2.3.15 (Hodge conjecture). Let M be a projective manifold.
For any a € HPP(M) N H?(M,Q), it could be generated linearly by the
fundamental classes with coefficients in Q.

Remark that the Hodge conjecture is false for Kéhler manifolds. And
there exists a € HPP(M) N H?*(M,Z) such that it could not be generated
linearly by the fundamental classes with coefficients in Z.

Here we summarize the supercommutative relations of 0,0, 0*,0*, L and
A for compact Kahler manifold, which contains the Kéhler identity.
Let [A, B] = AB — (—1)4IBIBA.

B A %) 0 o o L A
o) 0? 0 A 0 0 V—10*
) 0 0? 0 A 0 —/—10*
o A 0 o2 0 V—10 0
o 0 A 0 o2 | —/—=10 0
L 0 0 —/=10 | V/-10 0 n—k
A | —/—10* | /10" 0 0 k—n 0




